top of page

PUBLICATIONS

 

Book chapters

  • H. A. Ferreira, “Computer-assisted diagnosis of neuropsychiatric disorders using machine learning” in Handbook of Research on Ubiquitous Machine Learning and its Applications, N. F. M. Nunes and T. S. R. Araújo (Eds), IGI Global (in preparation).

 

Theses

 

2015

 

2014

 

2013

 

2012

 

 

Patents

 

2014

  • R. N. Henriques, M. M. Correia, R. G. Nunes, H. A. Ferreira, SISTEMA E MÉTODO PARA DETERMINAÇÃO DE MÉTRICAS E FIBRAS COM BASE EM IMAGEM POR CURTOSE DE DIFUSÃO, INPI 20141000078147 PPP, 6 October 2014. (slide)

 

 

International peer-reviewed scientific journals

 

Submitted/In submission

  • In submission: A. C. Mendes, A. Santos Ribeiro, A.-M. Oros-Peusquens, K.-J. Langen, C. W. Lucas, N. J. Shah, H. A. Ferreira, “Brain connectivity study of brain tumor patients using MR-PET data: a pilot study”

  • In resubmission: J. Brito, A. Andrade, H. Ferreira, K. Koschutnig, D. Fink, G. Pfurtscheller, "Dynamics of slow BOLD oscillations measured with the phase component of wavelet coherence".

  • Submitted: J. Leote, R. G. Nunes, L. Cerqueira, H. A. Ferreira, “Corticospinal MRI tractography in patients with space-occupying brain lesions: a comparison between probabilistic, diffusion tensor and kurtosis streamline methods”

  • Submitted: F. Lucena, T. F. Vaz, A. Santos Ribeiro, Luís M. Lacerda, N. A. da Silva, D. Nutt, J. McGonigle, H. A. Ferreira, "Assessment of the quality of brain regions and neuroimaging / connectivity metrics as biomarkers of Alzheimer’s Disease".

 

Accepted

  • J. P. Santos, M. Martins, H. A. Ferreira, J. Ramalho, D. Seixas, “Neural Imprints of National Brands versus Own-label Brands”, Journal of Product and Brand Management (accepted for publication)

 

2015

 

National peer-reviewed scientific journals

 

2014

 

 

Proceedings of international scientific meetings

2015

2014

2013

2012

Proceedings of national scientific meetings

2015

Other publications in international scientific platforms

2014

2013

 

 

Reports

 

2014

 

2013    

 

2012

Software Applications (see also the Gallery)

  • ACBC tool: Automatic Classification of Brain Connectivity matrices add-on for the MIBCA toolbox (Maximiano et al., 2015)

  • Brain AR/VR: smartphone/tablet application for visualizing the brain in Augmented Reality (Soeiro et al., 2015)

  • Brain Connectivity Leap v1.0 and 2.0: enhanced brain connectivity navigator with gesture control and haptic feedback (Rodrigues et al., 2015)

  • Brain Connectivity Touch, adapted and implemented for the Museum of Universal Values, Mafra, (Rodrigues et al., 2016)

  • DKIu – United DKI: software for DKI data analysis (Neto-Henriques et al., 2015)

  • MIBCA – Multimodal Imaging Brain Connectivity Toolbox (Santos Ribeiro et al., 2015)

  • Diffusion kurtosis imaging: Monte-Carlo simulation of water diffusion  (Sousa and Ferreira, 2015)

  • BrainVR: brain connectivity navigator (Ribeiro, 2014)

  • Implementation of the multi-compartment models for water diffusion (Sousa, 2013)

 

 

Other outputs (see also the Gallery)

 

Models

 

Protocols/Methods

  • Paradigm for studying memory functional connectivity of temporal epilepsy patients using Psychopy software for stimuli presentation and an in-house developed Button-Box (Pereira, 2014; collaboration with Hospital de São José)

  • Protocol for distributed processing of Monte-Carlo DKI simulations (Sousa and Ferreira, 2015; work in collaboration with the company Crowdprocess)

  • Protocol for brain connectivity data analysis (within the scope of communications done and the MIBCA toolbox software)

  • Method developed in MATLAB for SWI data analysis (A.C. Mendes, 2014)

  • Method developed in MATLAB for 2d temporal clustering analysis (TCA) of BOLD signals (Tavares, 2014)

  • Method developed in MATLAB for complexity analysis of BOLD signals using detrended fluctuation analysis (DFA) and multiscale entropy analysis (MSE) (Tavares, 2014, Thesis)

  • Method developed in MATLAB for improved epileptogenic tissue identification from BOLD signals using 2dTCA with DFA and MSE analysis of BOLD signals (Tavares, 2014, Thesis)

  • Method developed in MATLAB for functional dynamic analysis of BOLD signals using wavelet transforms, magnitude and phase coherence and delay calculation (Brito, 2014, Thesis)

bottom of page